BAB 15 Tabel Periodik



PERIODE DAN GOLONGAN

Unsur – unsur yang jumlah kulitnya sama terletak pada periode (baris) yang sama.

NOMOR PERIODE = JUMLAH KULIT

Unsur-unsur yang struktur elektron terluar sama terletak pada golongan ( kolom ) yang sama. Oleh karena itu unsure-unsur segolongan mempunyai sifat-sifat kimia yang sama.
Untuk menentukan nomor golongan, unsur-unsur kimia yang sama.
Untuk menentukan nomor golongan, unsure-unsur dibagi menjadi tiga Kelompok:
a. unsur-unsur utama
b. unsur-unsur transisi
c. unsur-unsur transisi-dalam

A. Unsur-unsur utama (representatif) = golongan A.

Unsur-unsur utama adalah unsur-unsur yang pengisian elektronnya berakhir pada subkulit s dan p.

Nomor Golongan = Jumlah Elektron terluar

2He 10Ne 18Ar 36Kr 54Xe 86Rn
8 8 18 18 32




Golongan Lama Golongan Elektron terluar
I A Golongan alkali s1
II A Golongan alkali tanah s2
III A Golongan boron s2p1
IV A Golongan karbon s2p2
V A Golongan nitrogen s2p3
VI A Golongan oksigen s2p4
VII A Golongan halogen s2p5
VIII A Golongan gas mulia s2p6

Catatan khusus :
1H 1s1 hidrogen tidak mempunyai golongan.
2He 1s2 Helium termasuk gas mulia (golongan VIIIA ).

B. Unsur-unsur transisi ( peralihan ) = Golongan B.
Unsur-unsur transisi adalah unsur-unsur yang pengisian elektronnya berakhir pada subkulit d.

Nomor Golongan = Jumlah Elektron s+d

Catatan Khusus :
s + d = 9 golongan VIII B
s + d = 10 golongan VIII B
s + d = 11 golongan I B
s + d = 12 golongan II B

C. Unsur-Unsur transisi dalam

Unsur-unsur transisi dalam alah unsur-unsur yang pengisian elektronnya berakhir pada subkulit f.
(1). Unsur-unsur lantanida : berakhir pada 4f
(2). Unsur-unsur aktinida : berakhir pada 5f


Soal & Jawaban

1. Jelaskan definisi/pengertian dari Tabel Periodik!

Jawab

Tabel periodik unsur-unsur kimia adalah tampilan unsur-unsur kimia dalam bentuk tabel. Unsur-unsur tersebut diatur berdasarkan struktur elektronnya sehingga unsur-unsur tersebut berubah-ubah secara teratur sepanjang tabel. Setiap sifat kimia unsur didaftarkan berdasarkan nomor atom danlambang unsurnya.

2. Siapakah orang petama yamg menemukan sistem keteraturan dalam sistem tebel periodik unsur?

Jawab

Orang pertama yang mengenali keteraturan tersebut adalah ahli kimia Jerman, yaitu Johann Wolfgang Döbereiner, yang pada tahun 1829.

3. Hal apakah yang menentukan setiap unsur dalam Tabel Sistem Periodik Unsur(SPU)?

Jawab
Setiap unsur ditentukan berdasarkan nomor atom dan lambang unsurnya.

4. Dalam sistem periodik ditemukan unsur-unsur yang bersifat mirip berulang dalam interval delapan yang dipersamakan dengan oktaf musik, yang kemudian disebut dengan hukum oktaf. Siapakah yang menemukan hukum oktaf tersebut?

Jawab
Hukum oktaf tersebut ditemukan oleh seorang ahli kimia Inggris, yaitu John Alexander Reina Newlands pada tahun 1865.

5. Ada berapakah cara pemberian nomor dalam suatu golongan? Sebutkan!

Jawab

1. Angka Arab
2. Angka Romawi
3. Yang terbaru adalah sistem IUPAC (International Union of Pure and Applied Chemistry)

Abdulrahman (09020)

BAB 16 Sifat Periodik Unsur





SIFAT PERIODIK

Jari-jari Atom

Jari-jari atom adalah jarak elektron di kulit terluar dari i

nti atom. Jari-jari atom sulit untuk ditentukan ap

abila unsur berdiri sendiri tanpa bersenyawa dengan unsur lain. Jari-jari atom secara lazim ditentukan dengan mengukur jarak dua inti atom yang identik yang terikat secara kovalen. Pada penentuan jari-jari atom ini, jari- jari kovalen adalah setengah

jarak antara inti dua atom identik yang terikat secara kovalen.

Penentuan jari-jari atom


Hubungan jari-jari atom gengan nomor atom

Kurva hubungan jari-jari atom dengan nomor atom memperlihatkan bahwa jari-jari atom dalam satu golongan akan semakin besar dari atas ke bawah. Hal ini terjadi karena dari atas ke bawah jumlah kulit bertambah sehingga jari-jari atom juga bertambah.

Jari-jari atom unsur

Unsur-unsur dalam satu periode (dari kiri k

e kanan

) berjumlah kulit sama tetapi jumlah proton bertambah sehingga jari-jari atom juga berubah. Karena jumlah proton bertambah maka muatan inti juga bertam

bah yang mengakibatkan gaya tarik menarik antara

inti dengan elektron pada kulit terluar se

makin kuat. Kekuatan gaya tarik yang semakin meningkat menyebabkan jari-jari atom semakin kecil. Sehingga untuk unsur dalam satu periode, jari-jari atom semakin kecil dari kiri ke kanan.

Energi Ionisasi

Energi minimum yang dibutu

hkan untuk melepas elektron atom netral dalam wujud gas pada kulit terluar dan terikat paling lemah disebut energi ionisasi. Nomor atom dan jari-ja

ri atom me

mpengaruhi besarnya energi ionisasi. Semakin besar

jari-jari atom maka gaya ta

rik antara inti dengan elektron pada kulit terlua

r semakin lemah. Hal ini berarti elektron pada kulit terluar semakin mudah lepas dan energi yang dibutuhkan untuk melepaskan elektron tersebut semakin kecil. Akibatnya, dalam satu golongan, energi ionisasi semakin kecil dari atas ke bawah. Sedagkan dalam satu periode, ener

gi ionisasi semakin besar da

ri kiri ke kanan. Hal ini disebabkan dari k

iri ke kanan muatan iti semakin besar yang mengakibatkan gaya tarik antara inti dengan elektron terluar semakin besar sehingga dibutuhkan energi yang besar pula untuk melepaskan elektron pada kulit terluar.


Afinitas elektron merupakan enegi yang dilepaskan atau diserap oleh atom netral dalam bentuk gas apabila terjadi penangkapan satu elektron yang ditempatkan pad

a kulit terluarnya dan atom menjadi ion negatif. Afinitas elektron dapat berharga positif dan negatif. Afinitas elektron berharga negatif apabila dalam proses penangkapan satu elektron, energi dilepaskan. Ion negatif yang terbentuk a

kibat proses tersebut bersifat stabil. Hal sebaliknya terjadi apabila dalam proses penangkapan satu elektron, energi diserap. Penyerapan energi menyebabk

an ion yang terbentuk bersifat tidak stabil. Semakin negatif harga afinitas lektron suatu atom unsur maka ion yang terbentuk semakin stabil.



Afinitas elektron golongan 1, 2, 3, 4, 5, 6 dan 7

Gambar menunjukkan bahwa atom unsur golongan 2A dan 8A mempunyai afinitas elektron yang berharga positif. Hal ini mengindikasikan bahw

a unsur golongan 2A dan 8A sulit menerima elektron. Afinitas elektron terbesar dimiliki oleh unsur golongan halogen karena unsur golongan ini paling mudah menangkap elektron. Jadi secara umum dapat dikatakan bahwa afinitas elektron, dalam satu periode, dari kiri ke kanan semakin negatif dan dalam satu golongan dari atas ke bawah, semakin positif.

Keelektronegatifan

Keelektronegatifan ada-lah skala yang dapat menjelaskan kecenderungan atom suatu unsur untuk menarik elektron menuju kepadanya dalam suatu ikatan. Keelektronegatifan secara umum, dalam satu periode, dari kiri ke kanan semakin bertambah dan dalam satu golongan, dari atas ke bawah keelekrnegatifan semakin berkurang.


Elektronegatifitas


Soal.

  1. Jelaskan yang dimaksud dengan sifat periodic ?
  2. Apasaja yang termasuk dalam sifat periodic ?
  3. Jelaskan mengenai energi ionisasi ?
  4. Mengapa dalam satu periode, dari kiri ke kanan semakin bertambah dan dalam satu golongan, dari atas ke bawah keelekrnegatifan semakin berkurang ?
  5. Jelaskan mengenai afinitas electron ?

Jawab.

  1. Sifat Periodik merupakan sifat yang berubah secara beraturan menurut kenaikan nomor atom dari kiri ke kanan dalam satu periode dan dari atas ke bawah dalam satu golongan.
  2. Sifat periodik meliputi jari-jari atom, energi ionisasi, afinitas electron dan keelektronegatifan.
  3. Energi ionisasi adalah energi yang diperlukan untuk melepaskan elektron yang paling lemah/luar dari atom suatu unsur atau ion dalam keadaan gas.

- Dalam satu perioda, dari kiri ke kanan potensial ionisasi bertambah.

- Dalam satu golongan, dari atas ke bawah potensial ionisasi berkurang.

  1. karena dalam satu periode, dari kiri ke kanan, muatan inti atom semakin bertambah yang mengakibatkan gaya tarik antara inti atom dengan elektron terluar juga semakin bertambah. Fenomena ini menyebabkan jari-jari atom semakin kecil, energi ionisasi semakin besar, afinitas elektron makin besar dan makin negatif dan akibatnya kecenderungan untuk menarik elektron semakin besar.
  2. Affinitas elektron adalah besarnya energi yang dibebaskan pada saat atom suatu unsur dalam keadaan gas menerima elektron.

- Dalam satu perioda, dari kiri ke kanan affinitas elektron bertambah.

- Dalam satu golongan, dari atas ke bawah affinitas elektron berkurang.

Teguh Permana (09023)

Diskusi 01

Soal Diskusi Pertemuan 1. Tentang Komponen Materi

  1. Berapa % masa atom yang terkonsentrasi di inti ? Ecco (09038)
  2. Apa yang dimaksud dengan isoton,isotop dan isobar ? Dhika (09011)
  3. Molekul diatomic disebabkan oleh unsure-unsur apa saja ? Arip Mustakim(09018)
  4. Jelaskan atom yang terbukti memiliki kalor listrik ? Choiru Zaman (09027)
  5. jelaskan mengenai molekul diaotomic & poliatomik ? Eka Bayu Saputra (0908)

Jawab.

  1. Lebih dari 99 % massa atom terkonsentrasi di inti.

  1. Isotop
    Atom yang mempunyai nomor atom yang sama tetapi memiliki nomor massa yang berbeda disebut dengan isotop.

Isoton
Isoton ialah atom dari unsur yang berbeda (mempunyai nomor atom berbeda),tetapi mempunyai jumlah neutron yang sama.Karena nomor atomnya berbeda maka sifat-sifatnya juga berbeda.

Isobar
Isobar adalah atom dari unsur yang berbeda (mempunyai nomor atom berbeda) tetapi mempunyai jumlah nomor massa yang sama. Karena nomor atomnya berbeda maka sifat-sifatnya juga berbeda.

  1. Molekul diatomik terbentuk oleh satu unsur saja contohnya : Hidrogen {air)

  1. Semua atom terdiri atas komponen yang sama, yaitu sebuah inti dan electron. Inti terdiri atas proton dan neutron, masa proton memiliki muatan positif, Muatan ini adalah satuan muatan listrik terkecil, Elektron adalah partikel dengan satuan muatan negatif, dan suatu atom tertentu mengandung sejumlah elektron yang sama dengan jumlah proton yang ada di inti atomnya. Jadi atom memang terbukti memiliki kalor listrik, baik positif maupun negatif.

  1. Molekul diatomik : Molekul yang terbentuk oleh satu unsur/ atom saja (misalnya, Ne)

Molekul poliatomik : Molekul poliatomik terdiri lebih banyak atom (misalnya, CO2). Jenis ikatan antar atom dalam molekul poliatomik disebut ikatan kovalen

BAB 14 Struktur Senyawa Anorganik

Struktur banyak senyawa anorganik dapat dijelaskan dengan menggunakan teori VSEPR atau secara sederhana dengan teori valensi. Namun, beberapa senyawa anorganik yang tidak masuk dalam kelompok ini sangat penting baik dari sudut pandang teori maupun praktis. Beberapa senyawa ini akan didiskusikan di bawah ini.

AMONIA

Amonia NH3 seolah diturunkan dari metana dengan menggantikan atom karbon dengan atom nitrogen dan salah satu atom hidrogen dengan pasangan elektron bebas. Jadi, amonia memiliki seolah struktur tetrahedral. Namun untuk memahami struktur amonia, anda harus mempertimbangkan inversi atom nitrogen. Perilaku amonia sangat mirip dengan payung yang tertiup sehingga terbalik. Halangan inversinya hanya 5,8 kkal mol-1, dan inversi amonia pada suhu kamar sangat cepat(Gambar 4.10).



Secara prinsip, atom nitrogen dari amina yang mengikat tiga atom atau gugus yang berbeda dapat merupakan pusat asimetrik sebab nitrogen memiliki empat substituen termasuk pasangan elektron bebas. Namun karena adanya inversi ini, atom nitrogen tidak dapat menjadi pusat asimetrik..

DIBORAN

Diharapkan reaksi antara magnesium borida dan air akan menghasilkan boron trihidrida BH3. Namun, yang didapatkan adalah diboran B2H6. Nampaknya senyawa ini tidak dapat dijelaskan dengan teori valensi sederhana, dan banyak sekalai usaha telah dilakukan untuk mengelusidasi anomali ini.

Mg3B2 + 6H2O → 3Mg(OH)2 + B2H6 (4.1)

Kini telah dibuktikan bahwa senyawa ini memiliki struktur aneh sebagai beikut.



Kerangka molekulnya adalah jajaran genjang yang terbentuk dari dua atom boron dan dua atom hidrogen, dan atom hidrogen terikat pada dua atom boron disebut dengan hidrogen jembatan. Empat ikatan B-H terminal secara esensi terbentuk dari tumpang tindih orbital 1s hidrogen dan orbital hibrida boron. Sebaliknya, ikatan jembatan B—H—B adalah ikatan tiga pusat, dua elektron yang terbetuk dari hibridisasi hidrogen 1s dan dua orbital hibrida boron. Keberadaan ikatan seperti ini dikonfirmasi dengan mekanika kuantum.

SENYAWA GAS MULIA

Lama sekali dipercaya bahwa gas mulia hanya ada sebagai molekul monoatomik, dan tidak membentuk senyawa. Kimiawan Kanada Neil Bartlett (1932-) menemukan spesi ionik [O2]+[PtF6]- dengan mereaksikan oksigen dengan platina heksafluorida PtF6. Ia beranggapan reaksi yang mirip dengan ini yakni reaksi antara xenon dan PtF6 akan berlangsung karena energi ionisasi pertama xenon dekat nilainya dengan energi ionisasi perrtama molekul oksigen. Di tahun 1962 ia berhasil mendapatkan senyawa gas mulia pertama Xe(PtF6)x, (x = 1, 2).

Kemudian menjadi jelas bahwa gas mulia membentuk senyawa biner dengan oksigen dan fluorin yang keduanya memiliki keelektronegativan tinggi. XeF2 adalah molekul linear dengan kelebihan elektron, sementara XeF4 merupakan satu-satunya senyawa unsur berbentuk bujur sangkar. XeF6 berbentuk oktahedron terdistorsi, dan di dekat titik lelehnya, senyawa ini ada sebagai kristal [XeF5]+F-.

FEROSEN

Ferosen adalah senyawa terdiri atas dua cincin sikopentadienil yang melapisi kedua sisi atom Fe dan senyawa ini merupakan contoh pertama kelompok senyawa yang disebut dengan senyawa sandwich(Gambar 4.12).



Di awal tahun 1950-an , rekasi antara siklopentadienilmagnesium bromida dan FeCl3 anhidrat dilakukan dengan harapan akan dihasilkan turuanan fulvalena. Namun, senyawa dengan struktur (C6H5)2Fe yang diperoleh. Struktur senyawa ini didapatkan sangat unik: delapan belas elektron, dua belas dari dua molekul siklopentadienil (masing-masing enam elektron) dan enam dari kulit terluar Fe. Jadi, konfigurasi elektron gas mulia dicapai dan kestabilannya kira-kira sepadan. Kedua cincin siklopentadienail berputar layaknya piringan CD musik.

Abdulrahman (09020)

BAB 13 Struktur Senyawa Karbon

a. Keisomeran karena atom karbon asimetrik, keisomeran optik

Sebelum ada teori valensi, kimiawan/fisiologis Perancis Louis Pasteur (1822-1895) telah mengenali pengaruh struktur molekul individual pada sifat gabungan molekul. Ia berhasil memisahkan asam rasemat tartarat (sebenarnya garam natrium amonium) menjadi (+) dan (-) berdasarkan arah muka hemihedral kristalnya (1848).

Kedua senyawa memiliki sifat fisika (misalnya titik leleh) dan kimia yang sama, tetapi ada perbedaan dalam sifat optik dalam larutan masing-masing senyawa. Keduanya memutar bidang polarisasi cahaya, dengan kata lain mempunyai keaktifan optik. Rotasi jenis kedua senyawa, yang mengkur kekuatan rotasi kedua senyawa, memiliki nilai absolut yang sama, namun tandanya berlawanan. Karena molekul berada bebas dalam larutan, perbedaan ini tidak dapat dijelaskan karena perbedaan struktur kristal. Sayangnya waktu itu, walaupun teori atom sudah ada, teori valensi belum ada. Dengan kondisi seperti ini Pasteur tidak dapat menjelaskan penemuannya.

Di tahun 1860-an, kimiawan Jerman Johannes Adolf Wislicenus (1835-1902) menemukan bahwa dua jenis asam laktat yang diketahui waktu itu keduanya adalah asam α-hidroksipropanoat CH3CH(OH)COOH, bukan asam β- hidroksipropanoat HOCH2CH2COOH. Ia lebih lanjut menyarankan bahwa konsep baru untuk stereoisomer harus dibuat untuk menjelaskna fenomena ini. Konse baru ini menyatakan bahwa kedua senyawa yang memiliki rumus struktur yang sama dalam dua dimensu dapat menjadi stereoisomer bila susunan atom-atomnya di ruang berbeda.

Di tahun 1874, van’t Hoff dan Le Bel secara independen mengusulkan teori atom karbon tetrahedral. Menurut teori ini, kedua asam laktat yang dapat digambarkan di Gambar 4.4. Salah satu asam laktat adalah bayangan cermin asam laktat satunya. Dengan kata lain, hubungan kedua senyawa seperti hubungan tangan kanan dan tangan kiri, dan oleh karena itu disebut dengan antipoda atau enantiomer. Berkat teori van’t Hoff dan Le Bel, bidang kimia baru, stereokimia, berkembang dengan cepat.

Pada atom karbon pusat di asam laktat, empat atom atau gigus yang berbeda terikat. Atom karbon semacam ini disebut dengan atom karbon asimetrik. Umumnya, jumlah stereoisomer akan sebanyak 2n, n adalah jumlah atom karbon asimetrik. Asam tartarat memiliki dua atom karbon asimetrik. Namun, karena keberadaan simetri molekul, jumlah stereoisomernya kurang dari 2n, dan lagi salah satu stereoisomer secara optik tidak aktif (Gambar 4.5). Semua fenomena ini dapat secara konsisten dijelaskan dengan teori atom karbon tetrahedral.

Namun karena adanya simetri, meso-asam tartarat secara optik tidak aktif.

b. Isomer geometri

Van’t Hoff menjelaskan keisomeran asam fumarat dan maleat karena batasan rotasi di ikatan ganda, suatu penjelasan yang berbeda dengan untuk keisomeran optik. Isomer jenis ini disebut dengan isomer geometri. Dalam bentuk trans subtituennya (dalam kasus asam fumarat dan maleat, gugus karboksil) terletak di sisi yang berbeda dari ikatan rangkap, sementara dalam isomer cis-nya subtituennya terletak di sisi yang sama.

Dari dua isomer yang diisoasi, van’t Hoff menamai isomer yang mudah melepaskan air menjadi anhidrida maleat isomer cis sebab dalam isomer cis kedua gugus karboksi dekat satu sama lain. Dengan pemanasan sampai 300 °C, asam fuarat berubah menjadi anhidrida maleat. Hal ini cukup logis karena prosesnya harus melibatkan isomerisasi cis-trans yang merupakan proses dengan galangan energi yang cukup tinggi (Gambar 4.6).

Karena beberapa pasangan isomer geometri telah diketahui, teori isomer geometri memberikan dukunagn yang baik bagi teori struktural van’t Hoff.

Struktur benzen

Struktur benzen menjadi enigma beberapa tahun. Di tahun 1865, Kekulé mengusulkan struktur siklik planar dengan tiga ikatan tunggal dan tiga ikatan ganda yang terhubungkan secara bergantian. Strukturnya disebut dengan struktur Kekulé. Bukti struktur semacam ini datang dari jumlah isomer benzen tersubstitusi. Dengan struktur Kekulé, akan ada tiga isomer kresol, yakni, o, m- dan p-kresol.

Struktur Kekulé tidak dapat menyelesaikan semua masalah yang berkaitan dengan struktur benzene. Bila benzene memiliki struktur seperti yang diusulkan Kekulé, akan ada dua isomer okresol, yang tidak diamati. Kekulé mempostulatkan bahwa ada kesetimbangan cepat, yang disebut dengan resonansi antara kedua struktur. Istilah resonansi kemudian digunakan dalam mekanika kuantum.
d. Struktur etana: analisis konformasional

Teori atom karbon tetrahedral dan struktur benzene memberikan fondasi teori struktur senyawa organik. Namun, van’t Hoff dan kimiawan lain mengenali bahwa masih ada masalah yang tersisa dan tidak dapat dijelaskan dengan teori karbon tetrahedral. Masalah itu adalah keisomeran yang disebabkan oleh adanya rotasi di sekitar ikatan tunggal.

Bila rotasi di sekitar ikatan C-C dalam 1,2-dikhloroetana CH2ClCH2Cl terbatas sebagaimana dalam kasus asam fumarat dan maleat, maka akan didapati banyak sekali isomer. Walaupun van’t Hoff awalnya menganggap adanya kemungkinan seperti itu, ia akhirnya menyimpulkan bahwa rotasinya bebas (rotasi bebas) karena tidak didapati isomer rotasional akibat batasan rotasi tersebut. Ia menambahkan bahwa struktur yang diamati adalah rata-rata dari semua struktur yang mungkin.

Di tahun 1930-an dibuktikan dengan teori dan percobaan bahwa rotasi di sekitar ikatan tunggal tidak sepenuhnya bebas. Dalam kasus etana, tolakan antara atom hidrogen yang terikat di atom karbon dekatnya akan membentuk halangan bagi rotasi bebas, dan besarnya tolakan akan bervariasi ketika rotasi tersebut berlangsung. Gambar 4.8(a) adalah proyeksi Newman etana, dan Gambar 4.8(b) adalah plot energi-sudut torsi.

Abdulrahman (09020)

BAB 11 Jenis Ikatan Kimia

a. Ikatan logam
Setelah penemuan elektron, daya hantar logam yang tinggi dijelaskan dengan menggunakan model elektron bebas, yakni ide bahwa logam kaya akan elektron yang bebas bergerak dalam logam. Namun, hal ini tidak lebih dari model. Dengan kemajuan mekanika kuantum, sekitar tahun 1930, teori MO yang mirip dengan yang digunakan dalam molekul hidrogen digunakan untuk masalah kristal logam.

Elektron dalam kristal logam dimiliki oleh orbital-orbital dengan nilai energi diskontinyu, dan situasinya mirip dengan elektron yang mengelilingi inti atom. Namun, dengan meingkatnya jumlah orbital atom yang berinteraksi banyak, celah energi dari teori MO menjadi lebih sempit, dan akhirnya perbedaan antar tingkat-tingkat energi menjadi dapat diabaikan. Akibatnya banyak tingkat energi akan bergabung membentuk pita energi dengan lebar tertentu. Teori ini disebut dengan teori pita.

Tingkat energi logam magnesium merupakan contoh teori pita yang baik (Gambar 3.8). Elektron yang ada di orbital 1s, 2s dan 2p berada di dekat inti, dan akibatnya terlokalisasi di orbital-orbital tersebut. Hal ini ditunjukkan di bagian bawah Gambar 3.8. Namun, orbital 3s dan 3p bertumpang tindih dan bercampur satu dengan yang lain membentuk MO. MO ini diisi elektron sebagian, sehingga elektron-elektron ini secara terus menerus dipercepat oleh medan listrik menghasilkan arus listrik. Dengan demikian, magnesium adalah konduktor.

Bila orbital-orbital valensi (s) terisi penuh, elektron-elektron ini tidak dapat digerakkan oleh medan listrik kecuali elektron ini lompat dari orbital yang penuh ke orbital kosong di atasnya. Hal inilah yang terjadi dalam isolator.

b. Ikatan hidrogen

Awalnya diduga bahwa alasan mengapa hidrogen fluorida HF memiliki titik didih dan titik leleh yang lebih tinggi dibandingkan hidrogen halida lain (gambar 3.9) adalah bahwa HF ada dalam bentuk polimer. Alasan tepatnya tidak begitu jelas untuk kurun waktu yang panjang. Di awal tahunh 1920-an, dengan jelas diperlihatkan bahwa polimer terbentuk antara dua atom flourin yang mengapit atom hidrogen.

Sangat tingginya titik didih dan titik leleh air juga merupakan masalah yang sangat menarik. Di awal tahun 1930-an, ditunjukkan bahwa dua atom oksigen membentk ikatan yang mengapit hidrogen seperti dalam kasus HF (gambar 3.9). Kemudian diketahui bahwa ikatan jenis ini umum didapatkan dan disebut dengan ikatan hidrogen.

Ikatan hidrogen dengan mudah terbentuk bila atom hidroegen terikat pada atom elektronegatif seperti oksigen atau nitrogen. Fakta bahwa beberapa senyawa organik dengan gugus hidroksi -OH atau gugus amino -NH2 relatif lebih larut dalam air disebabkan karena pembentukan ikatan hidrogen dengan molekul air. Dimerisasi asam karboksilat seperti asama asetat CH3COOH juga merupakan contoh yang sangat baik adanya ikatan hidrogen.



Ikatan Van der Waals

Gaya dorong pembentukan ikatan hidrogen adalah distribusi muatan yang tak seragam dalam molekul, atau polaritas molekul (dipol permanen). Polaritas molekul adalah sebab agregasi molekul menjadi cair atau padat. Namun, molekul non polar semacam metana CH4, hidrogen H2 atau He (molekul monoatomik) dapat juga dicairkan, dan pada suhu yang sangat rendah, mungkin juga dipadatkan. Hal ini berarti bahwa ada gaya agreagasi antar molekul-molekul ini.. Gaya semacam ini disebut dengan gaya antarmolekul.

Ikatan hidrogen yang didiskusikan di atas adalah salah satu jenis gaya antarmolekul. Gaya antarmolekul khas untuk molekul non polar adalah gaya van der Waals. Asal usul gaya ini adalah distribusi muatan yang sesaat tidak seragam (dipol sesaat) yang disebabkan oleh fluktuasi awan elektron di sekitar inti. Dalam kondisi yang sama, semakin banyak jumlah elektron dalam molekul semakin mudah molekul tersebut akan dipolarisasi sebab elektron-elektronnya akan tersebar luas. Bila dua awan elektron mendekati satu sama lain, dipol akan terinduksi ketika awan elektron mempolarisasi sedemikian sehingga menstabilkan yang bermuatan berlawanan. Dengan gaya van der Waals suatu sistem akan terstabilkan sebesar 1 kkal mol-1. Bandingkan harga ini dengan nilai stabilisasi yang dicapai dengan pembentukan ikatan kimia (dalam orde 100 kkal mol-1). Kimiawan kini sangat tertarik dengan supramolekul yang terbentuk dengan agregasi molekul dengan gaya antarmolekul.

M Aditia Septiawan (09021)

BAB 12 Struktur Molekul Sederhana

Ikatan ionik dibentuk oleh tarikan elekrostatik antara kation dan anion. Karena medan listrik suatu ion bersimetri bola, ikatan ion tidak memiliki karakter arah. Sebaliknya, ikatan kovalen dibentuk dengan tumpang tindih orbital atom. Karena tumpang tindih sedemikian sehingga orbital atom dapat mencapai tumpang tindih maksimum, ikatan kovalen pasti bersifat terarah. Jadi bentuk molekul ditentukan oleh sudut dua ikatan, yang kemudian ditentukan oleh orbital atom yang terlibat dalam ikatan.

1.Teori tolakan pasangan elektron valensi
Di tahuan 1940, Sidgwick mengusulkan teori yang disebut dengan Teori tolakan pasangan elektron valensi [valence shell electron pair repulsion (VSEPR)], yang karena sifat kualitatifnya sangat mudah dipahami. Teorinya sangat cocok untuk mempredksi struktur senyawa berjenis XYm.

a.SENYAWA DENGAN ATOM PUSAT DIVALEN
b.SENYAWA DENGAN ATOM PUSAT TRIVALEN
c.SENYAWA DENGAN ATOM PUSAT TETRAVALEN
d.SENYAWA DENGAN VALENSI LEBIH TINGGI DARI EMPAT

2.Hibridisasi orbital atom
Diharapkan bahwa berilium khlorida BeCl2 dan timah (II) khlorida SnCl2 akan memiliki struktur yang mirip karena memiliki rumus molekul yang mirip. Namun, ternyata senyawa pertama berstruktur linear sedang yang kedua bengkok. Hal ini dapat dijelaskan dengan perbedaan orbital atom yang digunakan. Bila elektron-elektron mengisi orbital atom mengikuti prinsip Aufbau, elektron akan mengisi orbital atom yang berenergi terendah. Dua elektron diizinkan mengisi satu orbital. Menurut prinsip Pauli, tidak ada elektron yang memiliki satu set bilangan kuantum yang tepat sama. Masalah yang timbul adalah akan diletakkan di mana elektron ke-empat atom karbon. Telah ditetapkan bahwa konfigurasi elektron terendah atom adalah konfigurasi dengan jumlah elektron tak berpasangan maksimum dan masih tetap diizinkan oleh aturan Pauli dalam set orbital dengan energi yang sama (dalam kasus karbon adalah tiga orbital 2p). Dalam kasus ini awalnya semua elektron akan memiliki bilangan kuantum spin yang sama (yakni, +1/2 atau -1/2).

Sebagaimana didiskusikan di atas, baik teori VSEPR maupun hibridisasi orbital atom akan memberikan kesimpulan struktur molekul dan ion yang sama. Walaupun teori VSEPR hanya bergantung pada tolakan antar pasangan elektron, dan teori hibridisasi memberikan justifikasi teoritisnya.

Soal
1.Jelaskan mengenai ikatan ionik!

2.Jelaskan mengenai ikatan kovalen!

3.Apa yang dimaksud dengan berilium?

4.Apa yang dimaksud dengan konfigurasi electron terendah atom?

5.Apa nama teori yang diusulkan oleh Sidgwick?

Jawab
1.Ikatan ionik dibentuk oleh tarikan elekrostatik antara kation dan anion. Karena medan listrik suatu ion bersimetri bola, ikatan ion tidak memiliki karakter arah.

2.Ikatan kovalen dibentuk dengan tumpang tindih orbital atom. Karena tumpang tindih sedemikian sehingga orbital atom dapat mencapai tumpang tindih maksimum, ikatan kovalen pasti bersifat terarah.

3.Berilium adalah atom dengan dua elektron valensi dan konfigurasi elektron (1s22s2).

4.Konfigurasi elektron terendah atom adalah konfigurasi dengan jumlah elektron tak berpasangan maksimum dan masih tetap diizinkan oleh aturan Pauli dalam set orbital dengan energi yang sama (dalam kasus karbon adalah tiga orbital 2p).

5.Teori tolakan pasangan elektron valensi [valence shell electron pair repulsion (VSEPR)].

Teguh Permana (09023)

BAB 10 Teori Kuantum Ikatan Kimia

1.Metoda Heitler dan London
Sebagaimana dipaparkan di bagian 2.3, teori Bohr, walaupun merupakan model revolusioner, namun gagal menjelaskna mengapa atom membentuk ikatan. Teori Lewis-Langmuir tentang ikatan kovalen sebenarnya kualitatif, dan gagal memberikan jawaban pada pertanyaan fundamental mengapa atom membentuk ikatan, atau mengapa molekul lebih stabil daripada dua atom yang membentuknya.

Masalah ini diselesaikan dengan menggunakan mekanika kuantum (mekanika gelombang). Segera setelah mekanika kuantum dikenalkan, fisikawan Jerman Walter Heitler (1904-1981) dan fisikawan Jerman/Amerika Fritz London (1900-1954) berhasil menjelaskan pembentukan molekul hidrogen dengan penyelesaian persamaan gelombang sistem yang terdiri atas dua atom hidrogen dengan pendekatan. Sistemnya adalah dua proton dan dua electron.

2.Pendekatan ikatan valensi
Marilah kita perhatikan metoda Heitler dan London dengan detail. Bila dua atom hidrogen dalam keadaan dasar pada jarak tak hingga satu sama lain. Bila dua proton mendekat, menjadi sukar untuk membedakan dua proton. Dalam kasus ini, sistemnya dapat didekati dengan mudah kombinasi linear dua fungsi gelombang. Jadi,

Ψ+ = N+[1s1(1)1s2(2) +1s1(2)1s2(1)] (3.1)

Ψ-= N-[1s1(1)1s2(2) – 1s1(2)1s2(1)] (3.2)

dengan N+ dan N- adalah konstanta yang menormalisasi fungsi gelombangnya. Dengan menyelesaikan persamaan ini, akan diperoleh nilai eigen E+ dan E- yang berkaitan dengan gambar.

Metoda yang dipaparkan di atas disebut dengan metoda ikatan valensi (valence-bond/VB). Premis metoda VB adalah molekul dapat diungkapkan dengan fungsi-fungsi gelombang atom yang menyusun molekul. Bila dua elektron digunakan bersama oleh dua inti atom, dan spin kedua elektronnya antiparalel, ikatan yang stabil akan terbentuk.

Pendekatan orbital molekul
Metoda VB dikembangkan lebih lanjut oleh ilmuwan Amerika termasuk John Clarke Slater (1900-1978) dan Linus Carl Pauling (1901-1994). Namun, kini metoda orbital molekul (molecular orbital, MO) jauh lebih populer. Konsep dasar metoda MO dapat dijelaskan dengan mudah dengan mempelajari molekul tersederhana, ion molekul H2+.

Orbital ini melingkupi seluruh molekul, dan disebut dengan fungsi orbital molekul, atau secara singkat orbital molekul. Seperti juga, orbital satu elektron untuk atom disebut dengan fungsi orbital atom atau secara singkat orbital atom. Metoda untuk memberikan pendekatan orbital molekul dengan melakukan kombinasi linear orbital atom disebut dengan kombinasi linear orbital atom (linear combination of atomic orbital, LCAO).

Soal
1.Siapakah yang berhasil menjelaskan pembentukan molekul hidrogen dengan penyelesaian persamaan gelombang sistem yang terdiri atas dua atom hidrogen dengan pendekatan?

2.Mengapa J.W. Heitler dan F. London berhasil menjelaskan mengapa atom membentuk ikatan?

3.Metode apakah yang dipaparkan oleh Heitler dan London?

4.Siapakah yang mengembangkan metode VB setelah Heitler dan London?

5.Mengapa kini metoda orbital molekul (molecular orbital, MO) jauh lebih popular?


Jawab
1.Fisikawan Jerman Walter Heitler (1904-1981) dan fisikawan Jerman/Amerika Fritz London (1900-1954)

2.Mereka menghitung energi sistem sebagai fungsi jarak antar atom dan mendapatkan bahwa ada lembah dalam yang berkaitan dengan energi minimum yang diamati dalam percobaan (yakni pada jarak ikatan) tidak dihasilkan. Mereka mengambil pendekatan lain: mereka menganggap sistem dengan elektron yang posisinya dipertukarkan, dan menghitung ulang dengan asumsi bahwa dua sistem harus menyumbang sama pada pembentukan ikatan.

3.Metoda ikatan valensi (valence-bond/VB).

4.Ilmuwan Amerika termasuk John Clarke Slater (1900-1978) dan Linus Carl Pauling (1901-1994).

5.Karena konsep dasar metoda MO dapat dijelaskan dengan mudah dengan mempelajari molekul tersederhana, ion molekul H2+

Teguh Permana (09023)

BAB 4 Penemuan Elektron

Kemajuan yang sangat pesat dalam sains paruh pertama abad 20 ditandai dengan perkembangan paralel teori dan percobaan. Sungguh menakjubkan mengikuti perkembangan saintifik sebab kita dapat dengan jelas melihat dengan jelas berbagai lompatan perkembangan ini. Sungguh kemajuan dari penemuan elektron, sampai teori kuantum Planck, sampai penemuan inti atom Rutherford, teori Bohr, sampai dikenalkan teori mekanika kuantum merangsang kepuasan intelektual. Dalam kimia penemuan ide umum orbital dan konfigurasi elektron memiliki signifaksi khusus. Ide-ide ini dapat dianggap sebagai baik modernisasi dan pelengkapan teori atom.

Penemuan elektron

Menurut Dalton dan ilmuwan sebelumnya, atom tak terbagi, dan merupakan komponen mikroskopik utama materi. Jadi, tidak ada seorangpun ilmuwan sebelum abad 19 menganggap atom memiliki struktur, atau dengan kata lain, atom juga memiliki konponen yang lebih kecil. Keyakinan bahwa atom tak terbagi mulai goyah akibat perkembangan pengetahuan hubungan materi dan kelistrikan yang berkembang lebih lanjut. Anda dapat mempelajari perkembangan kronologis pemahaman hubungan antara materi dan listrik.

Tabel 2.1 Kemajuan pemahaman hubungan materi dan listrik.
Tahun Peristiwa
1800 Penemuan baterai (Volta)
1807 isolasi Na dan Ca dengan elektrolisis (Davy)
1833 Penemuan hukum elektrolisis (Faraday)
1859 Penemuan sinar katoda (Plücker)
1874 Penamaan elektron (Stoney)
1887 Teori ionisasi (Arrhenius)
1895 Penemuan sinar-X (Röntgen)
1897 Bukti keberadaan elektron (Thomson)
1899 Penentuan e/m (Thomson)
1909-13 Percobaan tetes minyak (Millikan)

Faraday memberikan kontribusi yang sangat penting, ia menemukan bahwa jumlah zat yang dihasilkan di elektroda-elektroda saat elektrolisis (perubahan kimia ketika arus listrik melewat larutan elektrolit) sebanding dengan jumlah arus listrik. Ia juga menemukan di tahun 1833 bahwa jumlah listrik yang diperlukan untuk menghasilkan 1 mol zat di elektroda adalah tetap (96,500 C). Hubungan ini dirangkumkan sebagai hukum elektrolisis Faraday.

Faraday sendiri tidak bermaksud menggabungkan hukum ini dengan teori atom. Namun, kimiawan Irish George Johnstone Stoney (1826-1911) memiliki wawasan sehingga mengenali pentingnya hukum Faraday pada struktur materi; ia menyimpulkan bahwa terdapat satuan dasar dalam elektrolisis, dengan kata lain ada analog atom untuk kelistrikan. Ia memberi nama elektron pada satuan hipotetik ini.

Kemudian muncul penemuan menarik dari percobaan tabung vakum. Bila kation mengenai anoda bila diberikan beda potensial yang tinggi pada tekanan rendah (lebih rendah dari 10-2 – 10-4 Torr)), gas dalam tabung, walaupun merupakan insulator, menjadi penghantar dan memancarkan cahaya. Bila vakumnya ditingkatkan, dindingnya mulai menjadi mengkilap, memancarkan cahaya fluoresensi (Gambar 2.1). Fisikawan Jerman Julius Plücker (1801-1868) berminat pada fenomena ini dan menginterpreatsinya sebagai beikut: beberapa partikel dipancarkan dari katoda. Ia memmebri nama sinar katoda pada partikel yang belum teridentifikasi ini (1859).



Torr adalah satuan tekanan yang sering digunakan untuk mendeskripsikan tingkat vakum. (1 Torr = 133, 3224 Pa)

Patikel yang belum teridentifikasi ini, setelah dipancarakan dari katoda, akan menuju dinding atbung atau anoda. Ditemukan bahwa partikel tersebut bermuatan karena lintasan geraknya akan dibelokkan bila medan magnet diberikan. Lebih lanjut, sifat cahaya tidak bergantung jenis logam yang digunakan dalam tabung katoda, maupun jenis gas dalam tabung pelucut ini. Fakta-fakta ini menyarankan kemungkinan bahwa partikel ini merupakan bahan dasar materi.

Fisikawan Inggris Joseph John Thomson (1856-1940) menunjukkan bahwa partikel ini bermuatan negatif. Ia lebih lanjut menentukan massa dan muatan partikel dengan memperkirakan efek medan magnet dan listrik pada gerakan partikel ini. Ia mendapatkan rasio massa dan muatannya. Untuk mendapatkan nilai absolutnya, salah satu dari dua tersebut harus ditentukan.

Fisikawan Amerika Robert Andrew Millikan (1868-1953) berhasil membuktikan dengan percobaan yang cerdas adanya partikel kelistrikan ini. Percobaan yang disebut dengan percobaan tetes minyak Millikan. Tetesan minyak dalam tabung jatuh akibat pengaruh gravitasi. Bila tetesan minyak memiliki muatan listrik, gerakannya dapat diatur dengan melawan gravitasi dengan berikan medan listrik. Gerakan gabungan ini dapat dianalisis dengan fisikan klasik. Millikan menunjukkan dengan percobaan ini bahwa muatan tetesan minyak selalu merupaka kelipatan 1,6×10-19 C. Fakta ini berujung pada nilai muatan elektron sebesar 1,6 x 10-19 C.

Rasio muatan/massa partikel bermuatan yang telah diketahui selama ini sekitar 1/1000 (C/g). Ratio yang didapatkan Thomson jauh lebih tinggnilai tersebut (nilai akurat yang diterima adalah 1,76 x108 C/g), dan penemuan ini tidak masuk dalam struktur pengetahuan yang ada saat itu. Partikel ini bukan sejenis ion atau molekul, tetapi harus diangap sebagai bagian atau fragmen atom.

Soal & Jawaban

1. Apa itu elektron?

Partikel-partikel terkecil dari atom

2. Siapakah penemu-penemu elektron?

1800 Penemuan baterai (Volta)
1807 isolasi Na dan Ca dengan elektrolisis (Davy)
1833 Penemuan hukum elektrolisis (Faraday)
1859 Penemuan sinar katoda (Plücker)
1874 Penamaan elektron (Stoney)
1887 Teori ionisasi (Arrhenius)
1895 Penemuan sinar-X (Röntgen)
1897 Bukti keberadaan elektron (Thomson)
1899 Penentuan e/m (Thomson)
1909-13 Percobaan tetes minyak (Millikan)

3. Apa buktian adanya elektron?

Dalam penelitiannya dia mempelajari bahwa tabung katoda pada kondisi vakum parsial (hampir vakum) yang diberi tegangan tinggi akan mengeluarkan “berkas sinar” dimana Thomson menyebut sinar ini sebagai “berkas sinar katoda” disebabkan berkas sinar ini berasal dari katoda (elektroda negative).B

Berkas sinar katoda ini apabila didekatkan dengan medan listrik negative maka akan dibelokan (berkas sinar katoda ini tertolak oleh medan negative), berdasarkan hal ini maka Thomson menyatakan bahwa berkas sinar katoda itu adalah partikel-partikel yang bermuatan negative yang ia sebut sebagai “corpuscle”.

Dia juga meyakini bahwa corpuscle itu berasal dari atom-atom logam yang dipakai sebagai elektroda pada tabung katoda. Dengan menggunakan jenis logam yang berbeda-beda sebagai elektroda yang dia gunakan pada tabung katoda maka percobaan Thomson tetap menghasilkan berkas sinar katoda yang sama.

Akhirnya Thomson menyimpulkan bahwa setiap atom pasti tersusun atas corpuscle. Corpuscle yang ditemukan oleh Thomson ini kemudian disebut sebagai “electron” oleh G. Johnstone Stoney.

4. Apa bentuk model atom terkenal J.J Thomson?

Model atom Thomson ini lebih dikenal sebagai “plum pudding model” atau dalam bahasa Indonesia dikenal sebagai “model roti kismis”.

5. Apa asumsi J.J Thomson setelah menemukan partikel-partikel atom?

Dari asumsi tersebut dia akhirnya meyakini bahwa atom sebenarnya tidak berbentuk masiv (berbentuk bulatan yang pejal) akan tetapi tersusun atas komponen-komponen penyusun atom.

Teguh Permana (09023)

BAB 6 Dasar-dasar Teori Kuantum Klasik

a. Spektrum atom

Bila logam atau senyawanya dipanaskan di pembakar, warna khas logam akan muncul. Ini yang dikenal dengan reaksi nyala. Bila warna ini dipisahkan dengan prisma, beberapa garis spektra akan muncul, dan panjang gelombang setiap garis khas untuk logam yang digunakan. Misalnya, garis kuning natrium berkaitan dengan dua garis kuning dalam spektrumnya dalam daerah sinar tampak, dan panjang gelombang kedua garis ini adalah 5,890 x 10-7 m dan 5,896 x 10-7 m.

Bila gas ada dalam tabung vakum, dan diberi beda potensial tinggi, gas akan terlucuti dan memancarkan cahaya. Pemisahan cahaya yang dihasilkan dengan prisma akan menghasilkan garisspektra garis diskontinyu. Karena panjang gelombang cahaya khas bagi atom, spektrum ini disebut dengan spektrum atom.

Fisikawan Swiss Johann Jakob Balmer (1825-1898) memisahkan cahaya yang diemisikan oleh hidrogen bertekanan rendah. Ia mengenali bahwa panjang gelombang λ deretan garis spektra ini dapat dengan akurat diungkapkan dalam persamaan sederhana (1885). Fisikawan Swedia Johannes Robert Rydberg (1854-1919) menemukan bahwa bilangan gelombang σ garis spektra dapat diungkapkan dengan persamaan berikut (1889).

σ = 1/ λ = R{ (1/ni2 ) -(1/nj2 ) }cm-1 … (2.1)

Jumlah gelombang dalam satuan panjang (misalnya, per 1 cm)

ni dan nj bilangan positif bulat(ni < style="font-weight: bold;">b. Teori Bohr

Di akhir abad 19, fisikawan mengalami kesukaran dalam memahami hubungan antara panjang gelombang radiasi dari benda yang dipanaskan dan intesitasnya. Terdapat perbedaan yang besar antara prediksi berdasarkan teori elektromagnetisme dan hasil percobaan. Fisikawan Jerman Max Karl Ludwig Planck (1858-1947) berusaha menyelesaikan masalahyang telah mengecewakan fisikawan tahun-tahun itu dengan mengenalkan hipotesis baru yang kemudian disebut dengan hipotesis kuantum (1900).

Berdasarkan hipotesisnya, sistem fisik tidak dapat memiliki energi sembarang tetapi hanya diizinkan pada nilai-nilai tertentu. Dengan radiasi termal, yakni radiasi energi gelombang elektromagnetik dari zat, gelombang elektromagnetik dengan frekuensi ν dari permukaan padatan akan dihasilkan dari suatu osilator yang berosilasi di permukaan padatan pada frekuensi tersebut. Berdasarkan hipotesis Planck, energi osilator ini hanya dapat memiliki nilai diskontinyu sebagaimana diungkapkan dalam persamaan berikut.

ε=nhν(n = 1, 2, 3,….) … (2.2)

n adalah bilangan bulat positif dan h adalah tetapan, 6,626 x 10-34 J s, yang disebut dengan tetapan Planck.

Ide baru bahwa energi adalah kuantitas yang diskontinyu tidak dengan mudah diterima komunitas ilmiah waktu itu. Planck sendiri menganggap ide yang ia usulkan hanyalah hipotesis yang hanya diperlukan untuk menyelesaikan masalah radiasi dari padatan. Ia tidak bertjuan meluaskan hipotesisnya menjadi prinsip umum.

Fenomena emisi elektron dari permukaan logam yang diradiasi cahaya (foto-iradiasi) disebut dengan efek fotolistrik. Untuk logam tertentu, emisi hanya akan terjadi bila frekuensi sinar yang dijatuhkan di atas nilai tertentu yang khas untuk logam tersebut. Alasan di balik gejala ini waktu itu belum diketahui. Einstein dapat menjelaskan fenomena ini dengan menerapkan hipotesis kuantum pada efek fotoelektrik (1905). Sekitar waktu itu, ilmuwan mulai percaya bahwa hipotesis kuantum merupakan prinsip umum yang mengatur dunia mikroskopik.

Fisikawan Denmark Niels Hendrik David Bohr (1885-1962) berusaha mengkombinasikan hipotesis kunatum Planck dengan fisika klasik untuk menjelaskan spektra atom yang diskontinyu. Bohr membuat beberapa asumsi seperti diberikan di bawah ini dan di Gambar 2.3.

Teori Bohr

1. Elektron dalam atom diizinkan pada keadaan stasioner tertentu. Setiap keadaan stasioner berkaitan dengan energi tertentu.
2. Tidak ada energi yang dipancarkan bila elektron berada dalam keadaan stasioner ini. Bila elektron berpindah dari keadaan stasioner berenergi tinggi ke keadaan stasioner berenergi lebih rendah, akan terjadi pemancaran energi. Jumlah energinya, h ν, sama dengan perbedaan energi antara kedua keadaan stasioner tersebut.
3. Dalam keadaan stasioner manapun, elektron bergerak dalam orbit sirkular sekitar inti.
4. Elektron diizinkan bergerak dengan suatu momentum sudut yang merupakan kelipatan bilangan bulat h/2π, yakni

mvr = n(h/2π), n = 1, 2, 3,. … (2.3)

Energi elektron yang dimiliki atom hidrogen dapat dihitung dengan menggunakan hipotesis ini. Di mekanika klasik, gaya elektrostatik yang bekerja pada elektron dan gaya sentrifugal yang di asilkan akan saling menyetimbangkan. Jadi,

e2/4πε0r2 = mv2/r … (2.4)

Dalam persamaan 2.3 dan 2.4, e, m dan v adalah muatan, massa dan kecepatan elektron, r adalah jarak antara elektron dan inti, dan ε0 adalah tetapan dielektrik vakum, 8,8542 x 10-2 C2 N-1 m2.

Jari-jari r dapat diungkapan dalam persamaan r = n2aB, n = 1, 2, 3,… (2.6) Dalam persamaan ini, aB adalah jari-jari minimum bila n = 1. Nilai ini, 5,2918 x 10-11 m, disebut dengan jari-jari Bohr.

Jelas energi elektron akan diskontinyu, masing-masing ditentukan oleh nilai n.

Alasan mengapa nilai E negatif adalah sebagai berikut. Energi elektron dalam atom lebih rendah daripada elektron yang tidak terikat pada inti. Elektron yang tidak terikat inti disebut elektron bebas. Keadaan stasioner paling stabil elektron akan berkaitan dengan keadaan dengan n = 1. Dengan meningkatnya n, energinya menurun dalam nilai absolutnya dan menuju nol.

c. Spektra atom hidrogen


Menurut teori Bohr, energi radiasi elektromagnetik yang dipancarkan atom berkaitan dengan perbedaan energi dua keadaan stationer i dan j. Jadi,

ΔE = hν = │Ej – Ej│= (2π2me4/ε02h2 )ï¼»(1/ni2 ) -(1/nj2 )ï¼½ nj > ni (2.9)

Bilangan gelombang radiasi elektromagnetik diberikan oleh:

ν = me4/8ε02n2h3)ï¼»(1/ni2 ) -(1/nj2 )ï¼½ (2.10)

Suku tetapan yang dihitung untuk kasus nj = 2 dan ni = 1 didapatkan identik dengan nilai yang didapatkan sebelumnya oelh Rydberg untuk atom hidrogen (lihat persamaan 2.1). Nilai yang secara teoritik didapatkan oleh Bohr (1,0973 x 10-7 m -1) disebut dengan konstanta Rydberg R∞. Deretan nilai frekuensi uang dihitung dengan memasukkan nj = 1, 2, 3, … berkaitan dengan frekuensi radiasi elektromagnetik yang dipancarkan elektron yang kembali dari keadaan tereksitasi ke tiga keadaan stasioner, n = 1, n =2 dan n = 3. Nilai-nilai didapatkan dengan perhitungan adalah nilai yang telah didapatkan dari spektra atom hidrogen. Ketiga deret tersebut berturut-turut dinamakan deret Lyman, Balmer dan Paschen. Ini mengindikasikan bahwa teori Bohr dapat secara tepat memprediksi spektra atom hidrogen. Spektranya dirangkumkan di Gambar 2.4.



d. Hukum Moseley

Fisikawan Inggris Henry Gwyn Jeffreys Moseley (1887-1915) mendapatkan, dengan menembakkan elektron berkecepatan tinggi pada anoda logam, bahwa frekuensi sinar-X yang dipancarkan khas bahan anodanya. Spektranya disebut dengan sinar-X karakteristik. Ia menginterpretasikan hasilnya dengan menggunakan teori Bohr, dan mendapatkan bahwa panjang gelombang λ sinar- X berkaitan dengan muatan listrik Z inti. Menurut Moseley, terdapat hubungan antara dua nilai ini (hukum Moseley; 1912).

1/λ = c(Z – s)2 … (2.11)

c dan s adalah tetapan yang berlaku untuk semua unsur, dan Z adalah bilangan bulat.

Bila unsur-unsur disusun dalam urutan sesuai dengan posisinya dalam tebel periodik (lihat bab 5), nilai Z setiap unsur berdekatan akan meningkat satu dari satu unsur ke unsur berikutnya. Moseley dengan benar menginterpretasikan nilai Z berkaitan dengan muatan yang dimiliki inti. Z tidak lain adalah nomor atom.

Berbagai unsur disusun dalam urutan sesuai dengan nomor atom sesuai hukum Moseley. Berkat hukum Moseley, masalah lama (berapa banyak unsur yang ada di alam?) dapat dipecahkan. Ini merupakan contoh lain hasil dari teori Bohr.

e. Keterbatasan teori Bohr

Keberhasilan teori Bohr begitu menakjubkan. Teori Bohr dengan sangat baik menggambarkan struktur atom hidrogen, dengan elektron berotasi mengelilingi inti dalam orbit melingkar. Kemudian menjadi jelas bahwa ada keterbatasan dalam teori ini. Seetelah berbagai penyempurnaan, teori Bohr mampu menerangkankan spektrum atom mirip hidrogen dengan satu elektron seperti ion helium He+. Namun, spektra atom atom poli-elektronik tidak dapat dijelaskan. Selain itu, tidak ada penjelasan persuasif tentang ikatan kimia dapat diperoleh. Dengan kata lain, teori Bohr adalah satu langkah ke arah teori struktur atom yang dapat berlaku bagi semua atom dan ikatan kimia. Pentingnya teori Bohr tidak dapat diremehkan karena teori ini dengan jelas menunjukkan pentingnya teori kunatum untuk memahami struktur atom, dan secara lebih umum struktur materi.


Soal & Jawaban

1. Apa yang dimaksud dengan spektrum atom ?
Pemisahan cahaya yang dihasilkan dengan prisma akan menghasilkan garisspektra garis diskontinyu. Karena panjang gelombang cahaya khas bagi atom

2. Apa yang diungkapkan oleh Fisikawan Swiss Johann Jakob Balmer ?
Cetusnya Ia mengenali bahwa panjang gelombang λ deretan garis spektra ini dapat dengan akurat diungkapkan dalam persamaan sederhana

3. Apa yang diungkapkan oleh Fisikawan Swedia Johannes Robert Rydberg ?
menemukan bahwa bilangan gelombang σ garis spektra dapat diungkapkan dengan persamaan berikut (1889).

σ = 1/ λ = R{ (1/ni2 ) -(1/nj2 ) }cm-1

ni dan nj bilangan positif bulat(ni < n =" 1," style="font-weight: bold;">Muhammad Aditia Septiawan (09021)

BAB 5 Model Atom

a. Ukuran atom

Sperti telah disebutkan di bagian sebelumnya, ketakterbagian atom perlahan mulai dipertanyakan. Pada saat yang sama, perhatian pada struktur atom perlahan menjadi semakin besar. Bila orang mempelajari struktur atom, ukurannya harus dipertimbangkan. Telah diketahui bahwa sebagai pendekatan volume atom dapat diperkirakan dengan membagi volume 1 mol padatan dengan konstanta Avogadro.

Thomson mengasumsikan bahwa atom dengan dimensi sebesar itu adalah bola seragam bermuatan positif dan elektron-elektron kecil yang bermuatan negatif tersebar di bola tersebut. Dalam kaitan ini model Thomson sering disebut dengan “model bolu kismis”, kismisnya seolah elektron dan bolunya adalah atom.

b. Penemuan inti atom

Setelah melakukan banyak kemajuan dengan mempelajari keradioaktifan, fisikawan Inggris Ernest Rutherford (1871-1937) menjadi tertarik pada struktur atom, asal radiasi radioaktif. Ia menembaki lempeng tipis logam (ketebalan 104 atoms) dengan berkas paralel partikel α (di kemudian hari ditemukan bahwa partikel α adalah inti atom He). Ia merencanakan menentukan sudut partikel yang terhambur dengan menghitung jumlah sintilasi di layar ZnS (Gambar 2.2). Hasilnya sangat menarik. Sebagian besar partikel melalui lempeng tersebut. Beberapa partikel terpental balik. Untuk menjelaskan hal yang tak terduga ini, Rutherford mengusulkan adanya inti atom .



Sangat aneh mendapati sebagian besar partikel berbalik, dan beberapa bahkan 180 derajat. Rutherford menyatakan bahwa dalam atom harus ada partikel yang massa cukup besar sehingga patikel α yang memiliki massa sebesar massa atom helium tertolak, dan yang jari-jarinya sangat kecil.

Menurut ide Rutherford, muatan positif atom terpusat di bagian pusat (dengan jari-jari terhitung sekitar 10-12 cm) sementara muatan negatifnya terdispersi di seluruh ruang atom. Partikel kecil di pusat ini disebut dengan inti. Semua model atom sebelumnya sebagai ruang yang seragam dengan demikian ditolak.

Namun, model atom Rutherford yang terdiri atas inti kecil dengan elektron terdispersi di sekitarnya tidak dapat menjelaskan semua fenomena yang dikenal. Bila elektron tidak bergerak, elektron akan bersatu dengan inti karena tarikan elektrostatik (gaya Coulomb). Hal ini jelas tidak mungkin terjadi sebab atom adalah kesatuan yang stabil. Bila elektron mengelilingi inti seperti planet dalam pengaruh gravitasi matahari, elektron akan mengalami percepatan dan akan kehilangan energi melalui radiasi elektromagnetik. Akibatnya, orbitnya akan semakin dekat ke inti dan akhirnya elektron akan jatuh ke inti. Dengan demikian, atom akan memancarkan spektrum yang kontinyu. Tetapi faktanya, atom yang stabil dan diketahui atom memancarkan spektrum garis (spektrum atom Bab 2.3(a) ) bukan spektrum kontinyu. Jelas diperlukan perubahan fundamenatal dalam pemikiran untuk menjelaskan semua fakta-fakta percobaan ini.


Soal & Jawaban

1. Siapakah penemu model atom yang terkenal saat ini ?
Dalton , J.J Thomson , Ernest Rutherford , Neils Bohr

2. Apa Kelebihan dan Kekurangan model atom Dalton ?
Ø Kelebihan :

o Dapat menerangkan Hukum Kekekalan Massa (Hukum Lavoisier).

o Dapat Menerangkan Hukum Perbandingan Tetap (Hukum Proust)

Ø Kekurangan :

o Tidak Dapat menerangkan sifat listrik atom

3. Apa Kelebihan dan Kekurangan model atom J.J Thomson ?
* Kelebihan :

o Dapat menerangkan adanya pertikel yang lebih kecil dari atom yang disebut partikel subatomik.

o Dapat menerangkan sifat listrik atom.

* Kelemahan :

o Tidak dapat menerangkan fenomena penghamburan sinar alfa pada lempengan tipis emas.

4. Apa Kelebihan dan Kekurangan model atom Ernest Rutherford ?
Ø Kelebihan :

o Dapat menerangkan fenomena penghamburan sinar alfa oleh lempeng tipis emas.

o Mengemukakan keberadaan inti atom

Ø Kelemahan:

o Tidak dapat menjelaskan mengapa elektron tidak jatuh ke dalam inti atom. Berdasarkan teori fisika, gerakan elektron mengitari inti ini disertai pemancaran energi sehingga lama – kelamaan energi elektron akan berkurang dan lintasannya makin lama akan mendekati inti dan jatuh ke dalam inti.

5. Apa Kelebihan dan Kekurangan model atom Neils Bohr ?
Ø Kelebihan :

* Mengaplikasikan teori kuantum untuk menjawab kesulitan dalam model atom rutherford.
* Menerangkan dengan jelas garis spektrum pancaran (emisi) atau serapan (absorpsi) dari atom hidrogen.

Ø Kelemahan :

* Tejadi penyimpangan untuk atom yang lebih besar dari hidrogen.
* Tidak dapat menerangkan efek Zeeman, yaitu spektrum atom yang lebih rumit bila atom ditempatkan pada medan magnet.


Teguh Permana (09023)

BAB 2 Komponen Materi

a. Atom
Satuan terkecil materi adalah atom. Materi didefinisikan sebagai kumpulan atom. Atom adalah komponen terkecil unsur yang tidak akan mengalami perubahan dalam reaksi Kimia. Semua atom terdiri atas komponen yang sama, sebuah inti dan electron.. Lebih dari 99 % massa atom terkonsentrasi di inti. Inti terdiri atas proton dan neutron, dan jumlahnya menentukan sifat unsur.
Massa proton sekitar 1,67 x 10–27 kg dan memiliki muatan positif, 1,60 x 10–19 C (Coulomb). Muatan ini adalah satuan muatan listrik terkecil dan disebut muatan listrik elementer. Inti memiliki muatan listrik positif yang jumlahnya bergantung pada jumlah proton yang dikandungnya. Massa neutron hampir sama dengan massa proton, tetapi neutron tidak memiliki muatan listrik. Elektron adalah partikel dengan satuan muatan negatif, dan suatu atom tertentu mengandung sejumlah elektron yang sama dengan jumlah proton yang ada di inti atomnya. Jadi atom secara listrik bermuatan netral.
Jumlah proton dan elektron yang dimiliki oleh unsure menentukan sifat Kimia unsure. Jumlah neutron mungkin bervariasi. Suatu unsure tertentu akan selalu memiliki nomor atom yang sama tetapi mungkin memiliki jumlah neutron yang berbeda-beda. Varian-varian ini disebut isotop.

b. Molekul
Komponen independen netral terkecil materi disebut molekul. Molekul monoatomik terdiri satu atom (misalnya, Ne). Molekul poliatomik terdiri lebih banyak atom (misalnya, CO2). Jenis ikatan antar atom dalam molekul poliatomik disebut ikatan kovalen
Salah satu alasan mengapa mengapa diperlukan waktu yang lama sampai teori atom diterima dengan penuh adalah sebagai berikut. Dalam teorinya Dalton menerima keberadaan molekul (dalam terminologi modern) yang dibentuk oleh kombinasi atom yang berbeda-beda, tetapi ia tidak tidak menerima ide molekul diatomik untuk unsur seperti oksigen, hidrogen atau nitrogen yang telah diteliti dengan intensif waktu itu. Dalton percaya pada apa yang disebut “prinsip tersederhana”4 dan berdasarkan prinsip ini, ia secara otomatis mengasumsikan bahwa unsur seperti hidrogen dan oksigen adalah monoatomik.

c. Ion
Atom atau kelompok atom yang memiliki muatan listrik disebut ion. Kation adalah ion yang memiliki muatan positif, anion memiliki muatan negatif. Tarikan listrik akan timbul antara kation dan anion. Dalam kristal natrium khlorida (NaCl), ion natrium (Na+) dan ion khlorida (Cl¯) diikat dengan tarikan listrik. Jenis ikatan ini disebut ikatan ion (lihat bab3.2 (a)).
Soal
1. apa saja yang termasuk kedalam komponen materi ?
2. jelaskan yang dimaksud dengan elektron ?
3. jelaskan yang dimaksud dengan atom ?
4. jelaskanlah pengertian dari ion?
5. mengapa tarikan listrik timbul jika kation dan anion bertemu ?
jawab.
1. yang termasuk kedalam komponen materi adalah Atom, Molekul, dan Ion.
2. Elektron merupakan partikel dengan satuan muatan negatif, dan suatu atom tertentu mengandung sejumlah elektron yang sama dengan jumlah proton yang ada di inti atomnya. Jadi atom secara listrik bermuatan netral.
3. Atom merupakan komponen terkecil unsur yang tidak akan mengalami perubahan dalam reaksi Kimia. Yang terdiri atas komponen yang sama, yaitu sebuah inti dan electron..
4. ion merupakan Atom atau kelompok atom yang memiliki muatan listrik, baik bermuatan listrik positif (kation) maupun yang bermuatan listrik negative (anion).
5. karma seperti yang kita ketahui tarikan listrik akan timbul apabila adanya pertemuan 2 kutub/ion yang berbeda, yaitu ion positif (kation) dan ion negatif (anion).

Teguh Permana (09023)

BAB 7 Kelahiran mekanika kuantum

a. Sifat gelombang partikel

Di paruh pertama abad 20, mulai diketahui bahwa gelombang elektromagnetik, yang sebelumnya dianggap gelombang murni, berperilaku seperti partikel (foton). Fisikawan Perancis Louis Victor De Broglie (1892-1987) mengasumsikan bahwa sebaliknya mungkin juga benar, yakni materi juga berperilaku seperti gelombang. Berawal dari persamaan Einstein, E = cp dengan p adalah momentum foton, c kecepatan cahaya dan E adalah energi, ia mendapatkan hubungan:

E = hν =ν = c/λ atau hc/ λ = E, maka h/ λ= p … (2.12)

De Broglie menganggap setiap partikel dengan momentum p = mv disertai dengan gelombang (gelombang materi) dengan panjang gelombang λ didefinisikan dalam persamaan (2.12) (1924). Tabel 2.2 memberikan beberapa contoh panjag gelombang materi yang dihitung dengan persamaan (2.12). Dengan meningkatnya ukuran partikel, panjang gelombangnya menjadi lebih pendek. Jadi untuk partikel makroskopik, particles, tidak dimungkinkan mengamati difraksi dan fenomena lain yang berkaitan dengan gelombang. Untuk partikel mikroskopik, seperti elektron, panjang gelombang materi dapat diamati. Faktanya, pola difraksi elektron diamati (1927) dan membuktikan teori De Broglie.

Tabel 2.2 Panjang-gelombang gelombang materi.
partikel massa (g) kecepatan (cm s-1) Panjang gelombang (nm)
elektron (300K) 9,1×10-28 1,2×107 6,1
elektron at 1 V 9,1×10-28 5,9×107 0,12
elektron at 100 V 9,1×10-28 5,9×108 0,12
He atom 300K 6,6×10-24 1,4×105 0,071
Xe atom 300K 2,2×10-22 2,4×104 0,012

Perhatikan bahwa panjang gelombang materi yang berkaitan dengan gelombang peluru jauh lebih pendek dari gelombang sinar-X atau γ dan dengan demikian tidak teramati.

b. Prinsip ketidakpastian

Dari yang telah dipelajari tentang gelombang materi, kita dapat mengamati bahwa kehati-hatian harus diberikan bila teori dunia makroskopik akan diterapkan di dunia mikroskopik. Fisikawan Jerman Werner Karl Heisenberg (1901-1976) menyatakan tidak mungkin menentukan secara akurat posisi dan momentum secara simultan partikel yang sangat kecil semacam elektron. Untuk mengamati partikel, seseorang harus meradiasi partikel dengan cahaya. Tumbukan antara partikel dengan foton akan mengubah posisi dan momentum partikel.

Heisenberg menjelaskan bahwa hasil kali antara ketidakpastian posisi x dan ketidakpastian momentum p akan bernilai sekitar konstanta Planck:

xp = h (2.13)

Hubungan ini disebut dengan prinsip ketidakpastian Heisenberg.

Perkiraan ketidakpastian kecepatannya hampir setengah kecepatan cahaya (2,998 x108 m s-1) mengindikasikan bahwa jelas tidak mungkin menentukan dengan tepat posisi elektron. Jadi menggambarkan orbit melingkar untuk elektron jelas tidak mungkin.

c. Persamaan Schrödinger

Fisikawan Austria Erwin Schrödinger (1887-1961) mengusulkan ide bahwa persamaan De Broglie dapat diterapkan tidak hanya untuk gerakan bebas partikel, tetapi juga pada gerakan yang terikat seperti elektron dalam atom. Dengan memperuas ide ini, ia merumuskan sistem mekanika gelombang. Pada saat yang sama Heisenberg mengembangkan sistem mekanika matriks. Kemudian hari kedua sistem ini disatukan dalam mekanika kuantum.

Dalam mekanika kuantum, keadaan sistem dideskripsikan dengan fungsi gelombang. Schrödinger mendasarkan teorinya pada ide bahwa energi total sistem, E dapat diperkirakan dengan menyelesaikan persamaan. Karena persamaan ini memiliki kemiripan dengan persamaan yang mengungkapkan gelombang di fisika klasik, maka persamaan ini disebut dengan persamaan gelombang Schrödinger.

Persamaan gelombang partikel (misalnya elektron) yang bergerak dalam satu arah (misalnya arah x) diberikan oleh:

(-h2/8π2m)(d2Ψ/dx2) + VΨ = EΨ … (2.14)

m adalah massa elektron, V adalah energi potensial sistem sebagai fungsi koordinat, dan Ψ adalah fungsi gelombang.
POTENSIAL KOTAK SATU DIMENSI (SUB BAB INI DI LUAR KONTEKS KULIAH KITA)

Contoh paling sederhana persamaan Schrödinger adalah sistem satu elektron dalam potensial kotak satu dimensi. Misalkan enegi potensial V elektron yang terjebak dalam kotak (panjangnya a

adalah 0 dalam kotak (0 < dx2 =" (-8π2mE/h2)Ψ" x =" 0" x =" a" 2dx =" 1" e =" n2h2/8ma2;" n =" 1," style="font-weight: bold;">ATOM MIRIP HIDROGEN

Dimungkinkan uintuk memperluas metoda yang digunakan dalam potensial kotak satu dimensi ini untuk menangani atom hidrogen dan atom mirip hidrogen secara umum. Untuk keperluan ini persamaan satu dimensi (2.14) harus diperluas menjadi persamaan tiga dimensi sebagai berikut:

(-h2/8π2m)Ψï¼»(∂2/∂x2) + (∂2/∂y2) +(∂2/∂z2)ï¼½+V(x, y, z)Ψ = EΨ … (2.19)

Bila didefinisikan ∇2 sebagai:

(∂2/∂x2) + (∂2/∂y2) +(∂2/∂z2) = ∇2 … (2.20)

Maka persamaan Schrödinger tiga dimensi akan menjadi:

(-h2/8π2m)∇2Ψ +VΨ = EΨ … (2.21)

atau ∇2Ψ +(8π 2m/h2)(E -V)Ψ = 0 … (2.22)

Energi potensial atom mirip hidrogen diberikan oleh persamaan berikut dengan Z adalah muatan listrik.

V = -Ze2/4πε0r … (2.23)

Bila anda substitusikan persamaan (2.23) ke persamaan (2.22), anda akan mendapatkan persamaan berikut.

∇2Ψ+(8π2m/h2)ï¼»E + (Ze2/4πε0r)ï¼½Ψ = 0 … (2.24)

Ringkasnya, penyelesaian persamaan ini untuk energi atom mirip hidrogen cocok dengan yang didapatkan dari teori Bohr.

BILANGAN KUANTUM

Karena elektron bergerak dalam tiga dimensi, tiga jenis bilangan kuantum (Bab 2.3(b)), bilangan kuantum utama, azimut, dan magnetik diperlukan untuk mengungkapkan fungsi gelombang. Dalam Tabel 2.3, notasi dan nilai-nilai yang diizinkan untuk masing-masing bilangan kuantum dirangkumkan. Bilangan kuantum ke-empat, bilangan kuantum magnetik spin berkaitan dengan momentum sudut elektron yang disebabkan oleh gerak spinnya yang terkuantisasi. Komponen aksial momentum sudut yang diizinkan hanya dua nilai, +1/2(h/2π) dan -1/2(h/2π). Bilangan kuantum magnetik spin berkaitan dengan nilai ini (ms = +1/2 atau -1/2). Hanya bilangan kuantum spin sajalah yang nilainya tidak bulat.

Tabel 2.3 Bilangan kuantum
Nama (bilangan kuantum) simbol Nilai yang diizinkan
Utama n 1, 2, 3,…
Azimut l 0, 1, 2, 3, …n – 1
Magnetik m(ml) 0, ±1, ±2,…±l
Magnetik spin ms +1/2, -1/2

Simbol lain seperti yang diberikan di Tabel 2.4 justru yang umumnya digunakan. Energi atom hidroegn atau atom mirip hidrogen ditentukan hanya oleh bilangan kuantum utama dan persamaan yang mengungkapkan energinya identik dengan yang telah diturunkan dari teori Bohr.

Tabel 2.4 Simbol bilangan kuantum azimut
nilai 0 1 2 3 4
simbol s p d f g

d. Orbital

Fungsi gelombang elektron disebut dengan orbital. Bila bilangan koantum utama n = 1, hanya ada satu nilai l, yakni 0. Dalam kasus ini hanya ada satu orbital, dan kumpulan bilangan kuantum untuk orbital ini adalah (n = 1, l = 0). Bila n = 2, ada dua nilai l, 0 dan 1, yang diizinkan. Dalam kasus ada empat orbital yang didefinisikan oelh kumpulan bilangan kuantum: (n = 2, l = 0), (n = 2, l = 1, m = -1), (n = 2, l = 1, m = 0), (n = 2, l = 1, m = +1).

Singkatan untuk mendeskripsikan orbita dengan menggunakan bilangan kuantum utama dan simbol yang ada dalam Tabel 2.4 digunakan secara luas. Misalnya orbital dengan kumpulan bilangan kuantum (n = 1, l = 0) ditandai dengan 1s, dan orbital dengan kumpulan bilangan kuantum (n = 2, l = 1) ditandai dengan 2p tidak peduli nilai m-nya.

Sukar untuk mengungkapkan Ψ secara visual karena besaran ini adalah rumus matematis. Namun, Ψ2 menyatakan kebolehjadian menemukan elektron dalam jarak tertentu dari inti. Bila kebolhejadian yang didapatkan diplotkan, anda akan mendapatkan Gambar 2.5. Gambar sferis ini disebut dengan awan elektron.



Bila kita batasi kebolehjadian sehingga katakan kebolehjadian menemukan elektron di dalam batas katakan 95% tingkat kepercayaan, kita dapat kira-kira memvisualisasikan sebagai yang ditunjukkan dalam Gambar 2.6.



KONFIGURASI ELEKTRON ATOM

Bila atom mengnadung lebih dari dua elektron, interaksi antar elektron harus dipertimbangkan, dan sukar untuk menyelesaikan persamaan gelombang dari sistem yang sangat rumit ini. Bila diasumsikan setiap elektron dalam atom poli-elektron akan bergerak dalam medan listrik simetrik yang kira-kira simetrik orbital untuk masing-masing elektron dapat didefinisikan dengan tiga bilangan kuantum n, l dan m serta bilangan kunatum spin ms, seperti dalam kasus atom mirip hidrogen.

Energi atom mirip hidrogen ditentukan hanya oleh bilangan kuantum utama n, tetapi untuk atom poli-elektron terutama ditentukan oleh n dan l. Bila atom memiliki bilangan kuantum n yang sama, semakin besar l, semakin tinggi energinya.

PRINSIP EKSKLUSI PAULI

Menurut prinsip eksklusi Pauli, hanya satu elektron dalam atom yang diizinkan menempati keadaan yang didefinisikan oleh kumpulan tertentu 4 bilangan kuantum, atau, paling banyak dua elektron dapat menempati satu orbital yang didefinisikan oelh tiga bilangan kuantum n, l dan m. Kedua elektron itu harus memiliki nilai ms yang berbeda, dengan kata lain spinnya antiparalel, dan pasangan elektron seperti ini disebut dengan pasangan elektron.

Kelompok elektron dengan nilai n yang sama disebut dengan kulit atau kulit elektron. Notasi yang digunakan untuk kulit elektron diberikan di Tabel 2.5.

Tabel 2.5 Simbol kulit elektron.
n 1 2 3 4 5 6 7
simbol K L M N O P Q

Tabel 2.6 merangkumkan jumlah maksimum elektron dalam tiap kulit, mulai kulit K sampai N. Bila atom dalam keadaan paling stabilnya, keadaan dasar, elektron-elektronnya akan menempati orbital dengan energi terendah, mengikuti prinsip Pauli.

Tabel 2.6 Jumlah maksimum elektron yang menempati tiap kulit.
n kulit l simbol Jumlah
maks elektron total di kulit
1 K 0 1s 2 (2 = 2×12)
2 L 0 2s 2 (8 = 2×22)
1 2p 6
3 M 0 3s 2 (18 = 2×32)
1 3p 6
2 3d 10
4 N 0 4s 2 (32 = 2×42)
1 4p 6
2 4d 10
3 4f 14

Di Gambar 2.7, tingkat energi setiap orbital ditunjukkan. Dengan semakin tingginya energi orbital perbedaan energi antar orbital menjadi lebih kecil, dan kadang urutannya menjadi terbalik. Konfigurasi elektron setiap atom dalam keadaan dasar ditunjukkan dalam Tabel 5.4. Konfigurasi elektron kulit terluar dengan jelas berubah ketika nomor atomnya berubah. Inilah teori dasar hukum periodik, yang akan didiskusikan di Bab 5.

Harus ditambahkan di sini, dengan menggunakan simbol yang diberikan di Tabel 2.6, konfigurasi elektron atom dapat dungkapkan. Misalnya, atom hidrogen dalam keadaan dasar memiliki satu elektron diu kulit K dan konfigurasi elektronnya (1s1). Atom karbon memiliki 2 elektron di kulit K dan 4 elektron di kulit L. Konfigurasi elektronnya adalah (1s22s22p2).

Muhammad Aditia Septiawan (09021)

BAB 3 Stoikiometri

a. Tahap awal stoikiometri

Di awal kimia, aspek kuantitatif perubahan kimia, yakni stoikiometri reaksi kimia, tidak mendapat banyak perhatian. Bahkan saat perhatian telah diberikan, teknik dan alat percobaan tidak menghasilkan hasil yang benar.

Salah satu contoh melibatkan teori flogiston. Flogistonis mencoba menjelaskan fenomena pembakaran dengan istilah “zat dapat terbakar”. Menurut para flogitonis, pembakaran adalah pelepasan zat dapat etrbakar (dari zat yang terbakar). Zat ini yang kemudian disebut ”flogiston”. Berdasarkan teori ini, mereka mendefinisikan pembakaran sebagai pelepasan flogiston dari zat terbakar. Perubahan massa kayu bila terbakar cocok dengan baik dengan teori ini. Namun, perubahan massa logam ketika dikalsinasi tidak cocok dengan teori ini. Walaupun demikian flogistonis menerima bahwa kedua proses tersebut pada dasarnya identik. Peningkatan massa logam terkalsinasi adalah merupakan fakta. Flogistonis berusaha menjelaskan anomali ini dengan menyatakan bahwa flogiston bermassa negatif.

Filsuf dari Flanders Jan Baptista van Helmont (1579-1644) melakukan percobaan “willow” yang terkenal. Ia menumbuhkan bibit willow setelah mengukur massa pot bunga dan tanahnya. Karena tidak ada perubahan massa pot bunga dan tanah saat benihnya tumbuh, ia menganggap bahwa massa yang didapatkan hanya karena air yang masuk ke bijih. Ia menyimpulkan bahwa “akar semua materi adalah air”. Berdasarkan pandangan saat ini, hipotesis dan percobaannya jauh dari sempurna, tetapi teorinya adalah contoh yang baik dari sikap aspek kimia kuantitatif yang sedang tumbuh. Helmont mengenali pentingnya stoikiometri, dan jelas mendahului zamannya.

Di akhir abad 18, kimiawan Jerman Jeremias Benjamin Richter (1762-1807) menemukan konsep ekuivalen (dalam istilah kimia modern ekuivalen kimia) dengan pengamatan teliti reaksi asam/basa, yakni hubungan kuantitatif antara asam dan basa dalam reaksi netralisasi. Ekuivalen Richter, atau yang sekarang disebut ekuivalen kimia, mengindikasikan sejumlah tertentu materi dalam reaksi. Satu ekuivalen dalam netralisasi berkaitan dengan hubungan antara sejumlah asam dan sejumlah basa untuk mentralkannya. Pengetahuan yang tepat tentang ekuivalen sangat penting untuk menghasilkan sabun dan serbuk mesiu yang baik. Jadi, pengetahuan seperti ini sangat penting secara praktis.

Pada saat yang sama Lavoisier menetapkan hukum kekekalan massa, dan memberikan dasar konsep ekuivalen dengan percobaannya yang akurat dan kreatif. Jadi, stoikiometri yang menangani aspek kuantitatif reaksi kimia menjadi metodologi dasar kimia. Semua hukum fundamental kimia, dari hukum kekekalan massa, hukum perbandingan tetap sampai hukum reaksi gas semua didasarkan stoikiometri. Hukum-hukum fundamental ini merupakan dasar teori atom, dan secara konsisten dijelaskan dengan teori atom. Namun, menarik untuk dicatat bahwa, konsep ekuivalen digunakan sebelum teori atom dikenalkan.

b. Massa atom relatif dan massa atom

Dalton mengenali bahwa penting untuk menentukan massa setiap atom karena massanya bervariasi untuk setiap jenis atom. Atom sangat kecil sehingga tidak mungkin menentukan massa satu atom. Maka ia memfokuskan pada nilai relatif massa dan membuat tabel massa atom (gambar 1.3) untuk pertamakalinya dalam sejarah manusia. Dalam tabelnya, massa unsur teringan, hidrogen ditetapkannya satu sebagai standar (H = 1). Massa atom adalah nilai relatif, artinya suatu rasio tanpa dimensi. Walaupun beberapa massa atomnya berbeda dengan nilai modern, sebagian besar nilai-nilai yang diusulkannya dalam rentang kecocokan dengan nilai saat ini. Hal ini menunjukkan bahwa ide dan percobaannya benar.



Kemudian kimiawan Swedia Jons Jakob Baron Berzelius (1779-1848) menentukan massa atom dengan oksigen sebagai standar (O = 100). Karena Berzelius mendapatkan nilai ini berdasarkan analisis oksida, ia mempunyai alasan yang jelas untuk memilih oksigen sebagai standar. Namun, standar hidrogen jelas lebih unggul dalam hal kesederhanaannya. Kini, setelah banyak diskusi dan modifikasi, standar karbon digunakan. Dalam metoda ini, massa karbon 12C dengan 6 proton dan 6 neutron didefinisikan sebagai 12,0000. Massa atom dari suatu atom adalah massa relatif pada standar ini. Walaupun karbon telah dinyatakan sebagai standar, sebenarnya cara ini dapat dianggap sebagai standar hidrogen yang dimodifikasi.

Massa atom hampir semua unsur sangat dekat dengan bilangan bulat, yakni kelipatan bulat massa atom hidrogen. Hal ini merupakan kosekuensi alami fakta bahwa massa atom hidrogen sama dengan massa proton, yang selanjutnya hampir sama dengan massa neutron, dan massa elektron sangat kecil hingga dapat diabaikan. Namun, sebagian besar unsur yang ada secara alami adalah campuran beberapa isotop, dan massa atom bergantung pada distribusi isotop. Misalnya, massa atom hidrogen dan oksigen adalah 1,00704 dan 15,9994. Massa atom oksigen sangat dekat dengan nilai 16 agak sedikit lebih kecil.

Perbedaan kecil dari massa atom yang ditemukan di tabel periodik (24.305) hasil dari perbedaan cara dalam membulatkan angkanya.

Massa molekul dan massa rumus

Setiap senyawa didefinisikan oelh rumus kimia yang mengindikasikan jenis dan jumlah atom yang menyususn senyawa tersebut. Massa rumus (atau massa rumus kimia) didefinisikan sebagai jumlah massa atom berdasarkan jenis dan jumlah atom yang terdefinisi dalam rumus kimianya. Rumus kimia molekul disebut rumus molekul, dan massa rumus kimianya disebut dengan massa molekul.5 Misalkan, rumus molekul karbon dioksida adalah CO2, dan massa molekularnya adalah 12 +(2x 6) = 44. Seperti pada massa atom, baik massa rumus dan massa molekul tidak harus bilangan bulat. Misalnya, massa molekul hidrogen khlorida HCl adalah 36,5. Bahkan bila jenis dan jumlah atom yang menyusun molekul identik, dua molekul mungkin memiliki massa molekular yang berbeda bila ada isostop berbeda yang terlibat.

Tidak mungkin mendefinisikan molekul untuk senyawa seperti natrium khlorida. Massa rumus untuk NaCl digunakan sebagai ganti massa molekular.

Perbedaan massa molekular H2O dan D2O sangat substansial, dan perbedaan ini sifat fisika dan kimia anatara kedua jenis senyawa ini tidak dapat diabaikan. H2O lebih mudah dielektrolisis daripada D2O. Jadi, sisa air setelah elektrolisis cenderung mengandung lebih banyak D2O daripada dalam air alami.

d. Kuantitas materi dan mol

Metoda kuantitatif yang paling cocok untuk mengungkapkan jumlah materi adalah jumlah partikel seperti atom, molekul yang menyusun materi yang sedang dibahas. Namun, untuk menghitung partikel atom atau molekul yang sangat kecil dan tidak dapat dilihat sangat sukar. Alih-alih menghitung jumlah partikel secara langsung jumlah partikel, kita dapat menggunakan massa sejumlah tertentu partikel. Kemudian, bagaimana sejumlah tertentu bilangan dipilih? Untuk

menyingkat cerita, jumlah partikel dalam 22,4 L gas pada STP (0℃, 1atm) dipilih sebagai jumlah standar. Bilangan ini disebut dengan bilangan Avogadro. Nama bilangan Loschmidt juga diusulkan untuk menghormati kimiawan Austria Joseph Loschmidt (1821-1895) yang pertama kali dengan percobaan (1865).

Sejak 1962, menurut SI (Systeme Internationale) diputuskan bahwam dalam dunia kimia, mol digunakan sebagai satuan jumlah materi. Bilangan Avogadro didefinisikan jumlah atom karbon dalam 12 g 126C dan dinamakan ulang konstanta Avogadro.

Ada beberapa definisi “mol”:

(i) Jumlah materi yang mengandung sejumlah partikel yang terkandung dalam 12 g 12C. (ii) satu mol materi yang mengandung sejumlah konstanta Avogadro partikel.

(iii) Sejumlah materi yang mengandung 6,02 x 1023 partikel dalam satu mol.

e. Satuan massa atom (sma)

Karena standar massa atom dalam sistem Dalton adalah massa hidrogen, standar massa dalam SI tepat 1/12 massa 12C. Nilai ini disebut dengan satuan massa atom (sma) dan sama dengan 1,6605402 x 10–27 kg dan D (Dalton) digunakan sebagai simbolnya. Massa atom didefinisikan sebagai rasio rata-rata sma unsur dengan distribusi isotop alaminya dengan 1/12 sma 12C.


Soal & Jawaban

1. Apa langkah-langkah yang perlu dilakukan untuk menyusun komponen dengan komponen lain dalam suatu reaksi ?
1. Menulis persamaan reaksi
2. Menyetarakan koefisien reaksi
3. Memahami bahwa perbandingan koefisien reaksi menyatakan perbandingan mol. Karena zat yang terlibat dalam reaksi berada dalam bentu larutan, maka mol larutan dapat dinyatakan sebagai:

n = V . M

2. Apa yang di ungkapkan oleh Flogistonis ?

Menurut para flogitonis, pembakaran adalah pelepasan zat dapat etrbakar (dari zat yang terbakar). Zat ini yang kemudian disebut ”flogiston”. Berdasarkan teori ini, mereka mendefinisikan pembakaran sebagai pelepasan flogiston dari zat terbakar

3. Apa kesimpulan dari percobaan willow oleh Filsuf dari Flanders Jan Baptista van Helmont ?

akar semua materi adalah air

4. Jelaskan definisi dari mol ?
(i) Jumlah materi yang mengandung sejumlah partikel yang terkandung dalam 12 g 12C.

(ii) satu mol materi yang mengandung sejumlah konstanta Avogadro partikel.

(iii) Sejumlah materi yang mengandung 6,02 x 1023 partikel dalam satu mol.

5. Berapa massa hidrogen menurut standar massa SI ?
tepat 1/12 massa 12C


Teguh Permana (09023)